
J .  Fluid Mech. (1985), vol. 156, p p .  479-494 

Printed in Great Britain 

479 

The inertial draining of a thin fluid layer between 
parallel plates with a constant normal force. Part 2. 

Boundary layer and exact numerical solutions 

By C. J. LAWRENCE, Y. K U A N G  AND S. WEINBAUM 
Department of Mechanical Engineering, The City College of The City University of New York, 

New York, New York 10031 

(Received 11 October 1984 and in revised form 30 January 1985) 

The draining of a fluid layer between rigid plane parallel boundaries under a constant 
normal force is considered. In Part 1 the effect of fluid inertia was considered in the 
inviscid and low- but finite-Reynolds-number limits along with the inertia of the 
moving body; in Part 2, we consider the case of negligible inertia of the moving body. 
We develop an approximate large-Reynolds-number solution, valid until the 
boundary layers of the rigid surfaces begin to overlap, and present a new exact 
solution of the full Navier-Stokes equations for a time-dependent double- 
axisymmetric stagnation-point flow. These solutions exhibit interesting n e t  features 
that illustrate the coupling of a time-dependent inviscid core flow with the growth 
of an unsteady boundary layer started from rest and the effect of Reynolds number 
on the merging of the boundary layers at large time. 

1. Introduction 
The general problem of the combined inertial and viscous draining of a fluid 

between rigid parallel surfaces under the action of a constant applied force such M 

gravity was formulated and various limiting behaviours defined in Part 1 (Weinbaum, 
Lawrence & Kuang 1985). The geometry and coordinate system are shown in figure 1. 
It was shown that the motion of the fluid and the pressure distribution in the thin 
fluid gap between the two rigid sugaces and away from edge effects had several 
simplifying features. The radial dependence of the velocity field and pressure 
distribution could be determined independent of Reynolds number and the Navier- 
Stokes equations reduced to a single nonlinear partial differential equation containing 
two dimensionless parameters based on the characteristic timescales of the problem. 
There are four major contributions to the force balance on the moving body. The 
first is the net external force, including buoyancy, which can be scaled to unity leaving 
three dimensionless forces describing the inertial contribution of the body, the inertial 
contribution of the fluid and the viscous contribution of the fluid. These forces are 
associated with three characteristic timescales : the gravitational time t ,  is the time 
for the body to fall under the action of the net external force and its own inertia; 
the inertial time ti is the time for the fluid to drain under the action of the external 
force and the fluid inertia; and the viscous diffusion time t ,  is the time for the vorticity 
generated at the two boundaries to spread through the initial gap height. The three 
times give rise to the two parameters, the Reynolds number Re = t& and /I = t i l t : .  
A fourth timescale is the viscous flow time t,; it characterizes the time for the body 
to fall in the absence of inertia. It is not independent of the others since t ,  = t : / t d .  
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FIGURE 1 .  Sketch of the geometry showing the coordinate axes. 

I n  this paper, we will deal exclusively with the case when /? = 0, that is the limit 
which the inertial time is much longer than the gravitational time. I n  this limit the 
external force is always balanced by the hydrodynamic force and the inertia of the 
moving body is neglected. The necessary conditions for this to occur have already 
been discussed in Part 1,  and analytical solutions for small but finite Re presented. 
With = 0,  the differential equation can be solved numerically for all Reynolds 
numbers. This constitutes an exact numerical solution of the full Navier-Stokes 
equations, in the sense that the radial dependence of the velocity field is found 
analytically before solving for the time and axial dependence, and all nonlinear terms 
are retained in the solution. Two approximate solutions are also presented herein, 
one for large Reynolds numbers and one for short times for all Re. The large- 
Reynolds-number solution is an extension of the infinite Re inviscid solution 
developed in Part 1 to the case of thin boundary layers a t  large but finite Re. A novel 
split-profile integral-equation technique is used to  obtain a solution which is valid 
up to the time when the two boundary layers meet. The small-time solution is 
developed to avoid the singular behaviour in the growth of the boundary-layer 
thickness a t  very early times. 

2. Formulation 
In  Part 1 (Weinbaum, Lawrence & Kuang 1985) i t  was shownthat theNavier-Stokes 

equations for this problem reduce to a single equation for the axial- and time-dependent 
reduced stream function F ( z , t ) .  I n  the limit where the rate of change of body 
momentum is negligible (/? = 0 )  the differential equation for F when rendered dimen- 
sionless simplifies to  

in which t ,  is the characteristic time used in the non-dimensionalization, ti is the 
characteristic inertial time of the problem ti  = (7cpa4/4W)? and Re is a Reynolds 
number, the ratio of the characteristic viscous time td = ht /v  to the inertial time ti, 
i.e. Re = td / t i .  The stream function is $ = r2F, with velocity components u = rF, and 
w = -2F.  
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The boundary and initial conditions for (1)  are 

F = O  and F z = O  on z = O ,  Pa, b)  

F =  -$ht and Fz = 0 on z = h(t), (3a ,  b )  

F = O  and h =  1 when t = 0 .  (4% b )  

Equation (3a )  is a second equation coupling the two dependent variables F(z,  t )  and 
h(t). Equation (1)  is a nonlinear partial differential equation with nonlinear boundary 
conditions and as such must be solved numerically in the general case. The numerical 
solution is presented here, together with the two limiting cases (i) small t ,  h x 1 ,  
(ii) large Re. The near-lubrication case of small Re was discussed in Part 1.  

3. Small-time solution 
An asymptotic solution can be found for the short period after the release of the 

body when it remains close to its original position. This solution is useful in starting 
the longer-time solutions in the following sections and is an interesting exercise in 
asymptotic analysis. To reveal the behaviour for short times, t, is chosen to be et, 
with E a small constant. New symbols are introduced for the dimensionless variables: 
7 for time and G for stream function. The boundary and initial conditions are 
unchanged and (1)  is re-written as 

The required solution must be asymptotic for fixed z and Re as s+O. A suitable 
form is 

~ ( z ,  7 ;  €1 E ~ C , ( Z ,  7 )  + S G , ( ~ ,  + 0(€3). (6) 

Equations for G, and a, are found by substituting (6) into ( 5 ) :  

G,,, = 1,  

G,,, = 0. 

Equations (7) and (8) have solutions 

G, = z~+a , (~ )+b , ( z ) ,  

= a6(7) +b,(z),  

where a,, b,, a, and b, are unknown functions. Initial condition (4a) requires that 
b, = b, = 0, but the boundary conditions (2)  and ( 3 )  cannot be satisfied by (9) 
and (10) .  Therefore, boundary layers must be present near z = 0 and 1, so inner ex- 
pansions must be used. To examine the boundary layer near z = 0, z is replaced 
by a new independent variable { = z /d  and G is replaced by g = G/&.  Equation ( 5 )  
takes the form 

The solution to (11) must be asymptotic for fixed 6 and Re as E + O ,  in the form 

g(C, 7 ;  4 - s&7) + O(&. (12) 
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1 
90@-~9Ocg-1 = 0. 

Note that (13) is the same as the start-up problem for unidirectional flow in a channel 
under the action of a constant applied pressure gradient. The boundary and initial 
conditions for go are : 

g o = O ,  got= 0 on y = O ;  and g o = O  when t =  0. (14) 

Equations (13) and (14) have a solution in similarity form 

where i3 erfc is the third repeated integral of the complementary error function, which 
takes the value 1/6d for zero argument. 

It is expected that C;r will be of order s2 everywhere, so boundary condition (3a) 
suggests that h will be of the form 

h(7; -8) - 1 + s 2 h 4 ( ~ ) + - 8 ~ h 6 ( ~ ) + 0 ( - 8 3 ) .  (16) 

Relation (16) indicates that the upper boundary will move very little from its initial 
position during the timescale of interest. Accordingly, boundary conditions (3) can 
be expanded in Taylor series about z = 1 to give conditions applicable a t  z = 1 and 
the appropriate boundary-layer variable is 6 = (1  -z)/d. Equation (7) is rewritten 
in terms of and a scaled stream function g = G / d  to give 

The required solution to (17) is asymptotic for fixed and Re as s+O and in the form 

s"(5, 7 ;  -8) - -8-i @-l(& 7) + goo(& 7 )  + o(&. 
(18) is inserted into (17) to give equations for #-1 and go: 

1 
g05T - Re 9"05g + 1 = 0, 

with boundary and initial conditions derived from (3) and (4) : 

g-15 = 0, cj-.l = -+h4. on = 0 and cj-l = 0 when 7 = 0; 

goo,= 0, go =-ih6T on 6 = 0 and go = 0 when 7 = 0. 

Equations (19) to (22) are solved to find 

g-1 = -+h4, > 

and 
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Expansions (6), (12)  and (18) are matched on intermediate spatial scales to give 
equations for a,, a,, b,, b,, h, and h,. These are: 

(25) 

b4(z) = 0, b5(z) = 0 ;  (26) 

4 
3 d  u4(7) = 0, a5(7) = -- 74 Re*; 

h,, = -27, h,, = -2u5+-771Re-f. 8 a  
3 d  

Equations (27) with initial condition (4b)  have solutions 

h, = -7', 

Finally, we have a uniform asymptotic expansion for G, 

and 
32 

15x2 
h - 1-es272+-i Re-tek7k+O(e3). 

Equations ( 5 ) ,  (11) and (17) show that no more terms will be generated until O(t?), 
so the remainder terms in (30) and (31) can be reduced. Since e was artificially 
introduced into the problem, it can be removed by using a different timescale to 
express the results. If t, is chosen to be ti, as will be the case in the rest of this paper, 
the expansions are expressed in their most useful form : 

These expansions are valid whenever t 4 1 and t Q Re. The velocity profile is 

r (34) 

Expansion (34) shows a uniform constant acceleration in the inviscid core with 
boundary layers whose thickness grows as ( t /Re) f .  For small Re the above expansions 
quickly become invalid as the boundary layers merge and viscous effects dominate 
the flow. For large Reynolds numbers the boundary layers persist for a long time but 
the expansions break down when nonlinear effects become important and the 
acceleration is no longer constant. The effect of Re first enters in terms of O(&) in 
(31) or (33) and describes the radial outflow in the top and bottom start-up boundary 
layers for a uniformly accelerated core. 
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4. Solution for large Re 
When the Reynolds number is large, the flow is governed by the inertia of the fluid 

except for thin boundary layers near the top and bottom walls. Thus, i t  is appropriate 
to choose the characteristic inertial time t, = ti in (1). This gives 

1 
Re 

FZt+e-2FF,,-- F,,, = 1. (35) 

Equations (35) and (3a) must be satisfied in the inviscid core. In this region the 
reduced stream function F takes the simpler form 

F = z @ ( t ) + @ ( t ) ,  (36) 

where the first term describes an inviscid stagnation-point flow and the second term, 
as we shall soon show, the displacement effect of the boundary layers. Substituting 
(36) in (35), one obtains 

@ and 8 satisfy the initial conditions 

P+at  = 1.  (37 a)  

@ = O ,  8 = O  when t = O .  (37h 4 

@ = tanht. (38) 

Equations (37a) and (37 b )  have the solution 

This is the same as (33) of Part 1 (Weinbaum et aE. 1985), which is the solution in 
the inviscid limit. Boundary conditions ( 2 b )  and (3b) cannot be satisfied by (36), so 
it is necessary to consider boundary layers near z = 0 and z = h(t) .  The radial velocity 
outside the boundary layers near z = 0 and z = h(t) .  The radial velocity outside the 
boundary layers is determined by the radial pressure gradient alone and is simply 
u = r tanh t .  It is unaffected by the presence of the boundary layers, so the analysis 
will be valid until the boundary layers overlap. 

To analyse the boundary layer near z = 0, new variables 5 = z Re4 and f = F Re: 
are introduced. Equation (35) becomes the boundary-layer equation 

which has initial and boundary conditions 

f =  0 when t = 0 ,  (40) 

f = O ,  f c = O  on 5 = 0 ,  

f-ccD-Re48 as g+m. 

In (36), 8 is the correction to the inviscid vertical velocity due to the displacement 
effect of the boundary layers. To illustrate this, the boundary-layer displacement 
thickness 6* is introduced: 

6*(t)  = Re-4 (1 -2) d5 = Re-4 A*,  (43) 

in which fc and @ respectively represent the radial velocity in the boundary layer 
and core, and A* is of order unity. Equation (43) is integrated directly and (42) is 
used to obtain 

6*(t) = - @(') or o(t) = s*( t )  @ ( t ) .  (44% b)  
@ ( t )  
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Then in terms of 6*, the stream function in the inviscid core is 

F = ( ~ - 6 * )  0, (45) 

and the limiting condition on the boundary-layer equation (42) becomes 

f - ( C - A * ) @  as C+m. (46 ) 

The flow is clearly symmetrical about the plane z = !jh, so the boundary-layer 
equations on the top surface z = h can be cast in the same form as (39), (40), (41) 
and (46). To achieve this, new variables, [= Ret (h - z )  andf = Re; [ @ h - F - 2 8 ] ,  are 
introduced and substituted into (35), (3) and (4a). The resulting equations are then 
separated in powers of Re to give the same set of boundary-layer equations, but with 
f and replacing f and 5. However a new equation is also produced from (3a) 
and (45), 

ht +2h@-448 = 0.  (47 ) 

Using initial condition (4b) ,  one can solve equation (47) exactly to give 

1 
cosh2 t h = -  + R e d  h,(t), 

in which h,(t) is the correction to the inviscid result due to the displacement effect 
of the boundary layers. It satisfies the equations 

hlt+2(h,-2A*)@ = 0, (49) 

h, = O  when t = 0 .  (50) 

Equations (36), (39)-(41), (46) and (48)-(50) represent a solution which is exact 
whenever there are distinct boundary layers in the flow. The solution only breaks 
down when the boundary layers begin to overlap. 6*(t) represents the correction to 
the inviscid solution developed in Part 1 (Weinbaum et al. 1985). It is determined 
by solving (39)-(41) and (46) and can then be used in (49) to calculate the correction 
to the gap height, h,(t). It is possible to solve (39) numerically, but this is complicated 
by the presence of the time derivative and is tantamount to a solution of the full 
Navier-Stokes equation which is undertaken in 95 below. To gain from a boundary- 
layer analysis we must simplify the equation, so we will find an approximate solution 
using a time-dependent momentum-integral method. 

Equation (39) is reduced to an ordinary differential equation by integrating 
through the boundary layer and assuming a particular form for the velocity profile. 
A new variable, 6(t)  = Reid@) is introduced to represent the outer edge of the 
boundary layer. Equation (39) is integrated over c from 0 to A to give 

[ f (41 , -4 f&o+3  ~ o ~ f ~ d C - 2 f ~ ( A ) f ( d ) - f ~ ~ ( A ) + f ~ ~ ( o ) - d  = 07 (51) 

where f(d) is an abbreviation for f ( A ( t ) ,  t )  etc. 
A bi-quadratic radial-velocity profile is chosen (u = rfc) where the velocity and its 

gradient are matched at (, = kA. A simple cubic or quartic profile is not sufficiently 
general to describe the behaviour at early time: 
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The at and b, and 6 are functions oft, but k is a constant to be chosen at a later stage 
in the analysis. The boundary conditions to be satisfied by ( 5 2 )  are: 

f = O ,  f c = O ,  fccc=-l on < = O ;  (53% b,  4 
f c = @ ,  f c c = Q  on < = A ;  (54% b)  

f, fc and fee continuous on < = kA. (55 a-c) 

Equations (53a ,  b) are the original boundary conditions; (53c )  is derived by setting 
c= 0 in (39 ) .  Equations (54) constitute the definition of the outer edge of the 
boundary layer and (55) are desirable smoothness properties of the velocity profile. 
Equations (52)-(55) are solved to find the coefficients a* and b, in terms of the still 
unknown k and A ( t )  : 

a =-1. 2A(1+ k )  ’ 6 ,  

kA2 + 2@ 
a, = 0, a, = 0, a2 = 

(57) 
- k 3 4 4 2 -  2 ~ )  k2(+A2 - @) @ -ak2A2 k2A2-2@ 

6(1 -k2)  ’ b1 = ( 1 - k 2 )  &(1-k2) ’ b 3 =  6A2(1 - k2)  ’ 9 b, = bo = 

Equations (52 ) ,  (56) and (57)  describe a family of velocity profiles which, once k is 
chosen, will have a single parameter, A ( t )  = A 2 / @ .  These equations are substituted 
into (51) and after a great deal of algebraic manipulation an equation for A is derived : 

- 1 +A[;+&, @, + d 2  a2] +A2[  -ik2@, +d3  @‘I + A3d4 G2 
A,  = , (58) @(gk2A + d,)  

where d,, . . . , d ,  are constants depending only on the choice of k .  If a simple cubic or 
quartic profile had been used one would obtain in place of (58 )  an equation with no 
real roots for A at t = 0: 

2 2 k 3 - k 2 - 4 k - 2  
d2 = - i ( k 2 - 2 k - 2 ) + -  

5 ; (59a,b) l + k  
d ,  = a ( k 2 - k - 1 ) ;  

k3-  3k2 + 8k+  4 d3 = i k2 - lk2  
l + k  20 9 (594 

k - 3  
d ,  = J-k4 - . d ,  = -&(k2-5k-5 ) .  ( 5 9 4  e )  

40 l + k ’  

Before an attempt is made to solve (58) ,  it is useful to consider the range of values 
for A. The shear stress must be positive in the boundary layer, which requires that 
fee 2 0 everywhere. This is true only for values of A between Amin = - 2 / k  and 
Amax = 2 / k 2 ,  so A is bounded. Furthermore, A must be positive since @ is always 
positive. Thirdly, there is a value fib for which the denominator of (58) vanishes and 
the profile shape, changes discontinuously. This non-physical behaviour is not 
permissible and occurs when 

(60) 
2 

A = A,  = 3 k l ( k 2 - 5 k - 5 ) .  

We can also use ( 5 8 )  to find the initial and final values for A.  For very large time, 
the flow in the boundary layer will be that for a quasi-steady stagnation point, since 
@ from (38 )  approaches unity and A will approach a steady value A, which satisfies 

d 4 A 3 , + d 3 A 2 , + d 2 A , - 1  = O .  (61) 
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When t = 0, the denominator of (58) vanishes since Qi is zero. Since A should not 
be singular, the numerator must also vanish. One can show that the vanishing of the 
numerator requires that A have the initial value A,, with 

using the fact that @ - t at very short time. Equation (62)  can be used to find a 
suitable value for k since the analytic solution is available for the first part of the 
motion. Equations (32) and (46) imply that when t is small A* = (4/3d) d. For the 
assumed velocity profile (52), the scaled displacement thickness is 

(1 +k+k2)-+kzA 
3(1 + k )  ’ 

A * = A  

From the definition of A,  d = A! & and so, when t is small, 

d - Att i .  

Equation (64) is substituted into (63)  to give for small t 

A* = c*d, 

with C* = Ag I (1+k+kZ)-+k2A,  
3 (1+k)  ’ 

(63)  

For each value of k,  (62) and (66)  give two values of c* (one for each root of A,) )  
aa shown in figure 2.  There are no real solutions for c* if k is chosen larger than 0.2819. 
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FIGURE 3. Velocity profiles in the boundary layer: -, biquadratic profiles used in integral solution 
(53), (k = 0.2397, A,  = 6.2745, A ,  = 3.0315, A ,  = 15.05); - -- -, analytic solution for small t (34). 

This means that, for larger k, the velocity profile (52) is not an adequate representation 
of the true solution and leads to  physically unrealizable results. For k smaller than 
this limit, values of c* between f and are physically possible. However, if we wish 
to  obtain limiting behaviour for S* a t  very short times, which is the same as the 
analytic solution in $3, then c* must be 4137~2. This corresponds to the value of 
k = 0.2397 which is on the lower branch of the curve using the negative sign in (62). 
With this value of k, equations (60)-(62) give 

A,  = 6.275, A m  = 3.032, Ab = 15.05. (67 1 
The shape of the velocity profile is shown in figure 3 for these values of A and for 
A = 0. It is clear that very little change in the profile occurs between the values A,, 
and A,. The small-time profile (34) is drawn on a corresponding scale and we see that 
it is modelled quite closely by the curve for A,. 

Equation (58) is relatively easy to integrate numerically to find A( t ) ,  S( t )  and S*(t ) ,  
which are shown in figure 4. A decays monotonically from A,, to A ,  and is well within 
the physical bounds defined above. S and S* do not increase monotonically, but 
increase to  maxima just after t = 1 and then decay slightly to their steady values. 
The steady value of S* is 0.5665 Re-?, which compares well with the exact numerical 
solution for steady stagnation-point flow obtained by Frossling ( 1940) 
S* = 0.5685 Re-4. The decline in 6 and S* can be explained by regarding the end of 
the boundary-layer development as a quasi-steady stagnation-point flow. For the 
steady flow the boundary-layer thickness is inversely proportional to the square root 
of the core velocity. Thus, as the velocity increases slowly towards its steady value, 
the boundary-layer thickness decreases slightly. The steady value of S, 1.741 Re-:, 
can be used to  estimate the limit of validity of the solution. When Re is sufficiently 
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FIQURE 4. Numerical solution of (58) for A @ ) ,  S(t)  and S*(t).  
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FIQURE 5. Solutions for the gap height h(t) : -, numerical solution; - - - -, integral boundary-layer 
solution for large Re (ho, hl allso shown); *, predicted limit of validity of large Re solution; -.- .-.-, 
matched asymptotic solution for small Re. 

large, the steady-state boundary layer will develop before the limit is reached and 
h(t) is accurately approximated by l/coshet. The limit is reached when 
h = 28 x 3.5 Re+; this gives the limit of validity, t,,, - alog Re. 

Equations (49) and (50) are integrated numerically using the solution for 6*. The 
displacement correction to the inviscid solution for the gap height h, is shown in 
figure 5 together with the total height for various Reynolds numbers. These solutions 
have the limit of validity derived above; after the limit is passed the height tends 
to a constant non-zero value, which is not physically possible. However, for Re > lo4, 
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the body falls through more than 98 yo of the initial height before the limit is reached, 
so the approximate solution describes the important part of the motion. 

It will be shown that the solutions are very accurate compared with the exact 
numerical solution until the limit derived above is reached. The two important 
features of the solution which give rise to this accuracy are the use of the analytically 
derived form for S* when t is small and the fact that the radial velocity component 
in the inviscid core is independent of the displacement effect of the top and bottom 
boundary layers. 

5. Numerical solution 
The boundary conditions ( 3 )  at the moving boundary z = h are inconvenient to 

apply in a numerical solution, so a new independent variable x = z /h( t )  is intro- 
duced. The characteristic inertial time ti is used for non-dimensionalization, since it 
is the time most commonly used in the previous sections. For brevity, the velocity 
U = ( l / h )  F, is introduced and ( 1 )  becomes 

2FU, xh, U, U,, 
h h Reh2 

u,+p 1 = o .  

Equation (68) contains a new term arising from the time dependence of the 
x-coordinate. 

The boundary conditions become : 

F = 0 ,  U = O  on x = O ;  (69) 

F = --Ih ,, U = O  on x =  1 .  (70) 

The flow is symmetrical about x = !j, so the equation need be solved only in the 
region 0 < x < + and (70) can be replaced by 

F = - + h , ,  U , = O  on x = + .  (71) 

Equations (68), (69) and (71) are solved using an implicit central-difference 
numerical scheme. For small to moderate Re, the boundary-layer development is so 
rapid that no special consideration is needed. For larger Re, the detailed structure 
of the boundary layer is important for a considerable part of the motion. However, 
a simplifying feature is that, when the boundary layer must be modelled, the core flow 
need not be, since it is a simple plug flow. In either case, the small-time solutions 
(32)-(34) are used to start the numerical procedure. Because of the diffusive nature 
of the solution, a rather small time step is needed for the integration to be stable. 
For all Reynolds numbers, the velocity profile eventually becomes nearly parabolic 
and then fewer points are needed in the discretization of the x-direction. In the limit 
of parabolic flow, the central difference scheme is exact and only two points are needed 
to apply the boundary conditions. The error in these numerical solutions is estimated 
to be 0.1 % up to t = 4 .  

The solutions for h( t ) ,  h,(t) and S*( t )  are shown in figures 5, 6 and 7. 
Figure 7 shows that the integral boundary-layer solution predicts S* very accurately 

up to the time when the boundary layers meet. The limit of validity of the integral 
solution t,,, is predicted accurately €or Re > lo3, but overpredicted €or smaller Re 
because then the boundary layers’ development is not completed before they meet. 
The predictions of the displacement correction to h and h, shown in figures 5 and 6 
are accurate well beyond tmax, because the total flow does not change very much until 
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FIQURE 6. Solutions for the disk velocity h,(t): - , numerical solution; ---- , integral 
boundary-layer solution for large Re; *, predicted limit of large-Re solution; -.-.-.-, matched 
asymptotic solution for small Re. 
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FIGURE 7. Scaled boundary-layer displacement thickness a*@) Re$ for large Reynolds numbers : 
-, numerical solution; - - - -, integral boundary-layer solution; *, predicted limit of validity 
of integral solution. 
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FIGURE 8. Development of radial-velocity profile with time: (a) Re = 10; ( b )  Re = 1OOO. 
Note that the velocity scale in (a )  is twice that in ( b ) .  

well after the boundary layers meet. The figures indicate that the integral boundary- 
layer method gives satisfactory results for almost all of the motion for Re larger than 
1000. For smaller Re, the boundary layers meet when the height is still relatively large 
and the interaction is important. The figures also confirm that the small-Re solution 
derived in Part 1 retains some accuracy up to a Reynolds number of 10. 

The development of the velocity profile is shown in figure 8 for Re = 10 and 
Re = 1000. For the larger Reynolds number, the profile shows a boundary layer 
almost until the peak velocity is achieved. The boundary layers merge between t = 1.5 
and 2.0 and then the viscous forces slow down the flow, with the profile moving 
towards a parabola. For the smaller Reynolds number, the viscous effects become 
important well before the peak velocity is achieved. The acceleration of the viscous 
flow is much slower and a lower maximum velocity is achieved. 
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FIGURE 9. Draining times: T, is the time for a fraction f of the fluid to drain from the gap. 

Limit Ordering of timescales Draining time T 

Re+co, 8-0 t g  < ti < td 2.18t, 

Re-tO, 8+0 td < t i ,  t g  < 1197t, 
R e j c o ,  B+co ti < t d ,  ti 4 t g  1 .38tg 

TABLE 1. Summary of results for dimensional draining time T in limiting cases 

6. Discussion 
Part 1 began with a discussion of the timescales involved in the problem and we 

are now in a position to resume that discussion. Figure 9 shows the times for the 
draining of 50 and 95 % of the fluid-filled gap as a function of Reynolds number for 
zero /3. The time for h to fall to 5 %  of its original value will be referred to as the 
draining time. We see that this is nearly constant for Re > lo3, when the fluid motion 
is largely inviscid throughout the draining time. For smaller Re, viscous effects 
become important during the draining time and the time taken varies inversely with 
Re. This figure is plotted using a dimensionless time based on t i .  The results are more 
illuminating when put in dimensional form, with dimensional draining time T. For 
zero /3, we have two limiting cases. For large Re ( 3  lo3) ,  T = 2.18ti, so the draining 
time is indeed characterized by the inertial time ti. For small Re ( < lo), T = 1197t,, 
so the draining time depends only on t,, but it is a very large multiple o f t , .  This 
explains why the low-Reynolds-number analysis was valid even for Re up to 10. The 
results of all the limiting cases presented in the two papers can be treated in this way 
and are summarized in table 1. 

The limit Re+O, /3+00, is not treated in the two papers, since only pathological 
p+sical interpretations could be found. The results in this limit depend on the size 
of the product Rep. The table confirms the interpretations of the three characteristic 
times of the problem and the limits in which they are important. 

The draining time is determined by the dominant force resisting the motion. If the 

k 
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fluid inertia is dominant, the draining time is characterized by ti. If the viscous forces 
are dominant, the important timescale is t,, but the draining time is a large multiple 
oft,. This is because t, is based on the initial configuration and the velocity decreases 
as the gap narrows. If the body inertia is dominant, the draining time is characterized 
by t,. 
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